IF 6000

Flux de retrabajo de gran ventana de proceso

Interflux® IF 6000 es un flux para soldadura sin limpieza, que contiene colofonia, con ventana de proceso aumentada para aplicaciones de flux selectivo, utilizado normalmente en soldadura manual, para retrabajos y reparaciones.

IF 6000 bottles 1

Adecuado para

  • El retrabajo y la reparación en una unidad electrónica pueden realizarse en unidades electrónicas defectuosas que vuelven del campo, pero también pueden ser necesarios en un entorno de producción electrónica para corregir defectos en los procesos de montaje y soldadura. Las acciones típicas de retrabajo y reparación implican la eliminación de puentes de soldadura, la adición de soldadura a componentes mal rellenos de agujeros pasantes o la adición de la soldadura que falta, la sustitución de componentes erróneos, la sustitución de componentes colocados en la dirección equivocada, la sustitución de componentes que presentan defectos relacionados con las altas temperaturas de soldadura en los procesos, la adición de componentes que se dejaron fuera del proceso debido, por ejemplo, a su disponibilidad o a su sensibilidad a la temperatura. La identificación de estos defectos puede realizarse mediante inspección visual, mediante AOI (inspección óptica automatizada), mediante ICT (pruebas en circuito, pruebas eléctricas) o mediante CAT (pruebas asistidas por ordenador, pruebas funcionales). Muchas operaciones de reparación pueden realizarse con una estación de soldadura manual que dispone de un (des)soldador con ajuste de temperatura. La soldadura se añade mediante un hilo de soldadura que está disponible en varias aleaciones y diámetros y que contiene un flux en su interior. En algunos casos se utiliza un flux líquido de reparación y/o un flux en gel para facilitar el proceso de soldadura manual. Para componentes de mayor tamaño, como BGA (Ball Grid Array), LGA (Land Grid Array) QFN (Quad Flat No Leads), QFP (Quad Flat Package), PLCC (Plastic Leaded Chip Carrier),... puede utilizarse una unidad de reparación que simula un perfil de reflujo. Estas unidades de reparación están disponibles en diferentes tamaños y con distintas opciones. En la mayoría de los casos contienen un precalentamiento por la parte inferior que suele ser IR (Infrarrojos). Este precalentamiento puede controlarse mediante un termopar que se coloca en la placa de circuito impreso. Algunas unidades disponen de una unidad pick and place que facilita la correcta colocación del componente en la placa de circuito impreso. La unidad de calentamiento suele ser de aire caliente o de infrarrojos, o una combinación de ambos. Con la ayuda de termopares en la PCB, el calentador se controla para crear el perfil de soldadura deseado. En algunos casos, el reto consiste en llevar el componente a las temperaturas de soldadura sin refundir los componentes adyacentes. Esto puede resultar difícil cuando el componente a reparar es grande y tiene componentes pequeños cerca. Para los BGA con bolas de una aleación de soldadura, se puede utilizar un flux en gel o un flux líquido con mayor contenido en sólidos. En este caso, la soldadura para la unión soldada la proporcionan las bolas. Pero también es posible el uso de una pasta de soldadura. La pasta de soldadura puede imprimirse en los conductores del componente o en la placa de circuito impreso. Esto requiere una plantilla diferente para cada componente. Los BGA también pueden sumergirse en una pasta de soldadura de inmersión especial que primero se imprime en una capa con una plantilla con una gran apertura y un grosor determinado. Para los QFN, LGA QFN, QFP, PLCC,... es necesario añadir soldadura para hacer una unión soldada. En algunos casos, los QFP pueden soldarse a mano, pero la técnica requiere experiencia, por lo que es preferible utilizar una unidad de retrabajo. Los QFP y PLCC tienen cables y pueden utilizarse con una pasta de soldadura por inmersión. Los QFN, LGA's QFN que no tienen cables sino contactos planos no pueden utilizarse con una pasta de soldar por inmersión porque sus cuerpos entrarían en contacto con la pasta de soldar. En este caso, la pasta de soldadura debe imprimirse en los contactos o en la placa de circuito impreso. En general, es más fácil imprimir la pasta de soldadura en el componente que en la placa de circuito impreso, sobre todo cuando se utiliza una plantilla denominada 3D que tiene una cavidad donde se fija la posición del componente. La sustitución de componentes con orificios pasantes puede realizarse con una estación de (des)soldadura manual. Suele hacerse colocando una punta desoldadora hueca sobre la parte inferior del cable del componente que puede succionar la soldadura del orificio. La punta desoldadora tendrá que calentar toda la soldadura del orificio pasante hasta que esté totalmente líquida. En el caso de placas térmicamente pesadas, esto puede resultar muy difícil. En este caso, también se puede calentar la parte superior de la junta de soldadura con un soldador. Otra posibilidad es precalentar la placa antes de la operación de desoldadura. La soldadura del componente con orificio pasante suele realizarse con un hilo de soldadura que contiene más flux o, alternativamente, se añade flux de repaso adicional en el orificio pasante y/o en el cable del componente. En el caso de conectores de orificio pasante más grandes, puede utilizarse un baño de soldadura por inmersión para extraer el conector. Si la accesibilidad en la placa de circuito impreso es limitada, puede utilizarse una boquilla de tamaño adaptado al conector. Se recomienda el uso de flux en esta operación.

  • La soldadura manual es una tecnología de fabricación electrónica que utiliza un (des)soldador manual para realizar una unión soldada o desoldar un componente de una placa de circuito impreso. El proceso se utiliza sobre todo en retrabajos y reparaciones, pero también para soldar componentes individuales que han quedado fuera del proceso de soldadura en masa (soldadura por reflujo o por ola). Esto puede deberse a la disponibilidad o a la sensibilidad a la temperatura de estos componentes. El soldador suele formar parte de una estación de soldadura que dispone de una fuente de alimentación que controla la temperatura del soldador. Esta temperatura puede ajustarse en función de la aleación de soldadura utilizada y suele situarse entre 320°C-390°C. El soldador dispone de una punta de soldar intercambiable que puede elegirse en función del componente que se vaya a soldar. Para una transferencia de calor óptima es recomendable utilizar la punta de soldar más grande posible, sobre todo cuando se sueldan componentes con orificios pasantes (de gran masa térmica). Para soldar componentes y placas térmicamente pesados, la potencia de la estación de soldadura también es importante para mantener la temperatura ajustada de la punta de soldar. En el retrabajo y la reparación, cambiar la punta de soldar para cada componente diferente no es realista y sólo se utilizan unas pocas puntas de soldar. Existen puntas de soldar para soldar varias juntas de soldadura de montaje superficial seguidas como, por ejemplo, para los SOIC (Small Outline Integrated Circuit) y los QFP (Quad Flat Package). Para favorecer la transferencia de calor y el flujo de la soldadura, las puntas de soldar son humectables, lo que significa que interactúan con la aleación de soldadura. Durante la soldadura, estas puntas se oxidan y pueden perder su humectabilidad, lo que obstruirá la transferencia de calor. Esto puede evitarse limpiando la punta de soldadura. Al cabo de un tiempo, las puntas de soldadura también se desgastarán y será necesario sustituirlas. La vida útil de la punta de soldar puede optimizarse evitando el uso de limpiadores de puntas de soldar abrasivos o agresivos o evitando limpiar mecánicamente la punta de soldar con, por ejemplo, lana de acero o papel de lija. Es aconsejable utilizar un limpiador de puntas absolutamente libre de halógenos. En la soldadura manual, la soldadura para la unión soldada suele suministrarse mediante un alambre de soldadura. Un alambre de soldadura está disponible en varios diámetros y varias aleaciones, y lleva en su interior una cantidad determinada de un cierto tipo de flux. La aleación suele ser la misma o una aleación similar a la del proceso de soldadura a granel (reflujo, ola o soldadura selectiva). El diámetro se elige en función del tamaño de la unión soldada. El contenido de flux en el hilo de soldadura suele venir determinado por la masa térmica del componente y la placa que se va a soldar. Las juntas de soldadura con orificios pasantes (de gran masa térmica) necesitan más flux. Un mayor contenido de flux también dará más residuos visuales de flux tras la soldadura. A veces se necesita más flux, que en la mayoría de los casos es un flux líquido de retrabajo y reparación, pero también puede ser un flux en gel. El tipo de flux/alambre de soldadura viene determinado por la soldabilidad de las superficies a soldar. Con la soldabilidad normal de los componentes electrónicos y las placas de circuito impreso es aconsejable un tipo de flux/alambre de soldadura 'L0' absolutamente libre de halógenos. En general, una operación de soldadura manual se realiza así: Ajuste la temperatura de la punta de soldar en función de la aleación de soldadura utilizada. Para las aleaciones sin plomo, la temperatura de trabajo aconsejada se sitúa entre 320°C y 390°C. Para metales más densos como el níquel, la temperatura puede elevarse a 420°C. Es importante utilizar una buena estación de soldadura. Utilice una estación de soldadura con un tiempo de respuesta corto y con potencia suficiente para su aplicación. Elija la punta de soldar correcta: para reducir la resistencia térmica, es importante crear una zona de contacto lo más amplia posible con las superficies a soldar. Caliente ambas superficies simultáneamente. Toque ligeramente con el hilo de soldadura, el punto donde se encuentran la punta de soldar y las superficies a soldar (la pequeña cantidad de soldadura asegura una disminución drástica de la resistencia térmica). Añada posteriormente sin interrupción, la cantidad correcta de soldadura cerca de la punta de soldar sin tocar la punta. Esto reducirá el riesgo de salpicaduras de flux y el consumo prematuro del mismo.

Principales ventajas

  • Cuando se sueldan componentes y placas de circuito impreso (PCB) con una gran masa térmica, suele necesitarse una gran ventana de proceso en tiempo y temperatura. Estas placas y componentes necesitan mucho calor para alcanzar las temperaturas de soldadura. Esto lleva tiempo y en algunos procesos de soldadura también requiere temperaturas elevadas. La química de soldadura tendrá que soportar/sobrevivir a estos tiempos mayores y temperaturas elevadas. El mayor reto es soldar componentes de masa térmica pesada con orificio pasante en una placa de circuito impreso de masa térmica pesada. En un agujero pasante, el calor necesario para la soldadura se necesita en ambos lados de la placa. Este calor suele aplicarse sólo desde un lado y tendrá que atravesar la placa hasta el otro lado. Si la placa de circuito impreso tiene muchas capas de Cu, capas gruesas de Cu y capas que están totalmente conectadas al barril del agujero pasante, se desviará mucho calor hacia un lado y habrá que aplicar más calor a la placa para obtener suficiente calor en el otro lado. En algunos procesos el calor se aplica desde ambos lados de la placa en un precalentamiento. Esto facilitará la soldadura a través de orificios en estas unidades electrónicas térmicamente pesadas. Sin embargo, si hay componentes sensibles a la temperatura en el lado en el que se aplica el precalentamiento, hay que tener cuidado de no sobrecalentar y (pre)dañar dichos componentes.

  • La química de soldadura absolutamente libre de halógenos no contiene halógenos ni haluros añadidos intencionadamente. La clasificación IPC permite hasta 500ppm de halógenos para la clasificación más baja 'L0'. Los flux para soldadura, las pastas de soldadura y los alambres de soldadura de esta clase suelen denominarse 'libres de halógenos'. La química de soldadura absolutamente libre de halógenos va un paso más allá y no contiene este nivel 'permitido' de halógenos. Específicamente en combinación con aleaciones de soldadura sin plomo y en aplicaciones electrónicas sensibles, se ha informado de que estos bajos niveles de halógenos causan problemas de fiabilidad como, por ejemplo, corrientes de fuga demasiado altas. Los halógenos son elementos de la tabla periódica como el Cl, el Br, el F y el I. Tienen la propiedad física de que les gusta reaccionar. Esto es muy interesante desde el punto de vista de la química de la soldadura porque su función es limpiar los óxidos de las superficies a soldar. Y efectivamente los halógenos realizan muy bien ese trabajo, incluso superficies difíciles de limpiar como el latón, Zn, Ni,...o superficies muy oxidadas o degradadas de I-Sn y OSP (Protección Orgánica de Superficies) pueden soldarse con la ayuda de flux halogenados. Los halógenos proporcionan una gran ventana de proceso en la soldabilidad. Sin embargo, el problema es que los residuos y productos de reacción de los flux halogenados pueden ser problemáticos para los circuitos electrónicos. Suelen tener una alta higroscopicidad y una elevada solubilidad en agua y suponen un mayor riesgo de electromigración y de altas corrientes de fuga. Esto supone un alto riesgo de mal funcionamiento del circuito electrónico. Específicamente con las aleaciones de soldadura sin plomo hay más informes de que incluso los niveles más pequeños de halógenos pueden ser problemáticos para las aplicaciones electrónicas sensibles. Las aplicaciones electrónicas sensibles suelen ser circuitos de alta resistencia, circuitos de medición, circuitos de alta frecuencia, sensores,... Por eso la tendencia es alejarse de los halógenos en la química de la soldadura en la fabricación de productos electrónicos. En general, cuando la soldabilidad de las superficies a soldar del componente y de la placa de circuito impreso (PCB) son normales, no hay necesidad de estos halógenos. Los productos de soldadura absolutamente libres de halógenos diseñados de forma inteligente proporcionarán una ventana de proceso lo suficientemente amplia como para limpiar las superficies y obtener un buen resultado de soldadura y esto en combinación con residuos de alta fiabilidad.

  • En 2006 la legislación restringió el uso de plomo (Pb) en la fabricación de productos electrónicos. Sin embargo, se formularon muchas exenciones, principalmente debido a la falta de experiencia a largo plazo sobre la fiabilidad de las aleaciones sin plomo. Esto dio lugar a que muchos centros de fabricación de productos electrónicos utilizaran tanto aleaciones sin plomo como aleaciones con Pb en sus procesos de soldadura. Para la soldadura por ola y selectiva, muchos fabricantes de electrónica deseaban utilizar la misma química de flux con ambos tipos de aleaciones de soldadura. Esto se debía a que estaban familiarizados con la química en términos de fiabilidad. Además, introducir nuevos materiales en una fabricación puede requerir mucho papeleo, capacidad de almacenamiento extra, etc... Aunque las aleaciones sin plomo requieren temperaturas de funcionamiento más altas que las aleaciones que contienen Pb, aumentando la cantidad de flux aplicado en muchos casos se puede utilizar la misma química de flux para ambas aleaciones. Sin embargo, en algunos casos, normalmente cuando se sueldan unidades electrónicas con una masa térmica elevada, no es posible utilizar el mismo flux para ambas aleaciones de soldadura. En estos casos, suele ser necesario un flux con mayor contenido en sólidos. Existen muchos alambres y pastas de soldadura con el mismo flux tanto para aleaciones sin plomo como para aleaciones SnPb.

  • Los bolígrafos de flux se utilizan para aplicar flux de soldadura líquido a las superficies que se van a (des)soldar en operaciones de soldadura manual en la fabricación de productos electrónicos. Existen plumas de flux rellenables y no rellenables. Los bolígrafos de flux no recargables son de un solo uso y más baratos. Pueden tener puntas de distintos tamaños y formas. Las plumas de flux rellenables pueden rellenarse con la ayuda de una jeringuilla con émbolo manual. Suelen tener puntas de fibra de vidrio que permiten una aplicación de flux muy dirigida, lo que evita la dispersión del flux fuera de la zona de soldadura. Estas plumas pueden limitar al mínimo los residuos de flux. Sin embargo, la punta de fibra de vidrio es bastante sensible al desgaste. Cuando se aplica demasiada presión, las puntas se desgastan rápidamente. La punta puede sustituirse, pero a menudo no resulta mucho más barato que una nueva pluma de flux. La punta de fibra de vidrio también es sensible al calor. Tocar una junta de soldadura caliente con el bolígrafo de flux puede quemar las fibras de vidrio. Los flux utilizados en los bolígrafos de flux son líquidos y suelen estar diseñados específicamente para la soldadura manual, el retrabajo y la reparación. Sin embargo, algunos fabricantes optan por utilizar el mismo flux que en el proceso de soldadura por ola para este fin, con el fin de evitar introducir otra química de soldadura en la unidad electrónica. Esto es posible pero tiene algunas limitaciones. La ventana de proceso de los flux para la soldadura en ola puede ser demasiado limitada para las operaciones de soldadura manual, concretamente cuando se sueldan juntas de soldadura a través de orificios.

  • La colofonia es un producto natural procedente de los árboles. Hay muchos tipos de colofonias con propiedades muy diferentes, pero se aplican algunas propiedades generales. Como parte de la química de la soldadura, al igual que los flux de soldadura, las pastas de soldadura y los alambres de soldadura, en general, la colofonia proporciona una gran ventana de proceso en el proceso de soldadura. Esto significa que, en general, es capaz de soportar tiempos más largos y temperaturas más altas que, por ejemplo, una resina. Una ventaja de la colofonia en un flux líquido es que, en general, tiende a dejar menos bolas de soldadura en la máscara de soldadura tras la soldadura por ola o selectiva. Además, el residuo de colofonia proporcionará una cierta protección contra la humedad atmosférica. Esto puede proporcionar una posibilidad extra de superar las pruebas de fiabilidad climática. Sin embargo, esta capacidad de protección se degrada con el tiempo. Por otro lado, la colofonia contenida en un flux para soldadura líquida también puede tener algunas desventajas. Aumenta el riesgo de que se obstruya la boquilla de pulverización o la boquilla de chorro de las máquinas de soldadura por ola y selectiva. Los residuos que quedan en la máquina y en los soportes son bastante difíciles de limpiar. Los residuos que quedan en la placa de circuito impreso pueden interferir en la prueba de pines eléctricos (ICT, In Circuit Testing) y crear un problema de contacto causando una lectura falsa/error falso. En algunos casos esto puede llevar a la obstrucción del flujo de producción. Cuando parte de la colofonia que contiene el flux pulverizado acaba accidentalmente en los contactos de, por ejemplo, un conector, un interruptor/relé/contactor con una carcasa parcialmente abierta o en los contactos de carbono o en el patrón de contactos de la placa de circuito impreso, esto también puede provocar problemas de contacto. En general, los residuos de colofonia son poco compatibles con los revestimientos conformados. Tras un ciclo térmico, el revestimiento conforme puede empezar a mostrar grietas por las que puede penetrar la humedad atmosférica y condensarse. Teniendo en cuenta todo lo anterior, sopesando las ventajas de la colofonia en los flux líquidos para soldadura frente a los inconvenientes, existe una tendencia actual a optar por flux líquidos sin colofonia. Los flux clasificados 'OR' no contienen colofonia. La colofonia se utiliza muy a menudo en los hilos de soldadura debido a su amplia ventana de proceso en tiempo y temperatura. La desventaja es que la colofonia tiende a decolorarse con la temperatura y deja residuos visualmente pesados. Cuando el alambre de soldadura se utiliza para repasar placas de circuito impreso electrónicas, este residuo es para algunos fabricantes electrónicos no deseable, ya que no les gusta que sus clientes vean que se ha realizado un repaso en una placa de circuito impreso. La limpieza de estos residuos de colofonia requiere agentes de limpieza especiales y es un proceso que lleva mucho tiempo. En este caso, los fabricantes pueden optar por un hilo de soldadura clasificado RE como el IF 14. Los residuos son mínimos y pueden eliminarse con un cepillo seco. La colofonia también se utiliza en pastas de soldadura. Además de proporcionar una buena ventana de proceso en tiempo y temperatura, también proporciona una buena estabilidad de la pasta de soldadura sobre el esténcil. Esto facilitará un proceso de impresión estable y, por tanto, unos resultados de soldadura y unos índices de defectos estables. La decoloración de la colofonia en la soldadura por reflujo no es tan prominente como en el caso del hilo de soldadura porque las temperaturas en la soldadura por reflujo son más bajas que en la soldadura manual. Aún así, el residuo de colofonia tiene poca compatibilidad con el revestimiento de conformación y con el tiempo, tras los ciclos térmicos, podría mostrar grietas o desprendimiento del revestimiento de conformación. Aunque la mayoría de los fabricantes aplican el revestimiento de conformación sobre los restos de pasta de soldadura, para obtener resultados óptimos es aconsejable limpiar los restos de pasta de soldadura. Dadas las ventajas de la colofonia descritas anteriormente, la mayoría de las pastas de soldadura contienen colofonia.

  • Los flux para soldadura a base de alcohol son flux líquidos que tienen alcohol(es) como disolvente(s) principal(es). La mayoría de los flux líquidos utilizados en la fabricación de productos electrónicos siguen siendo de base alcohólica. Las razones principales son su uso histórico y, por tanto, su cuota de mercado y su ventana de proceso, en general, mayor en comparación con los flux de base acuosa. Los flux de base acuosa tienen numerosas ventajas frente a los de base alcohólica, como un menor consumo, la ausencia de emisiones de COV (compuestos orgánicos volátiles, VOC en sus siglas en inglés), la ausencia de riesgo de incendio, la no necesidad de transporte y almacenamiento especiales, un menor olor en la zona de producción, ... Sin embargo, muchos fabricantes de electrónica parecen preferir la mayor ventana de proceso de los flux de base alcohólica a las ventajas de los flux de base acuosa. En general, los flux con base de alcohol son menos sensibles a los ajustes correctos del pulverizador flux para conseguir una buena aplicación del flux en la superficie y en los orificios pasantes. Además, se evaporan más fácilmente en el precalentamiento y ofrecen menos riesgo de que las gotas de disolvente restantes creen bolas de soldadura, salpicaduras de soldadura o puentes al entrar en contacto con la ola. Otro parámetro que complica la implantación de los flux al agua es que cambiar un flux en algunos casos puede ser un proceso largo y costoso. Suele implicar pruebas de homologación y la aprobación de los clientes finales. Específicamente para los EMS (Electronic Manufacturing Services = subcontratistas) esto puede suponer un reto. Algunos países ya han aplicado una legislación que limita las emisiones de COV de las chimeneas de las fábricas o que impone impuestos a las emisiones de COV. Esto parece ser un incentivo adicional para cambiar a los flux de base acuosa. Un acontecimiento reciente ha obligado a muchos fabricantes a interesarse por los flux de base acuosa. La pandemia de COVID, a principios de 2020, aumentó repentinamente la demanda de desinfectantes a base de alcohol hasta el punto de que en un momento dado la disponibilidad de alcoholes en el mercado era prácticamente inexistente. Por suerte, la industria que produce alcoholes pudo aumentar sus volúmenes justo a tiempo para evitar que los fabricantes de electrónica se quedaran sin flux para hacer funcionar sus máquinas de soldar.

  • Cuando un producto de soldadura lleva la etiqueta No-Clean, significa que ha superado pruebas de fiabilidad como una prueba de resistencia al aislamiento superficial (SIR) o una prueba de migración electro(química). Estas pruebas están diseñadas para comprobar las propiedades higroscópicas de los residuos del producto de soldadura en condiciones de temperatura elevada y humedad relativa alta. No-Clean indica que los residuos pueden permanecer en la unidad electrónica tras el proceso de soldadura sin ser limpiados. Esto se aplicará con diferencia a la mayoría de las aplicaciones electrónicas. Para aplicaciones electrónicas muy sensibles, que suelen ser circuitos electrónicos de alta resistencia, circuitos electrónicos de alta frecuencia, etc... es posible que sea necesaria la limpieza de la unidad electrónica. Siempre es responsabilidad del fabricante electrónico juzgar si la limpieza es necesaria o no.

  • RoHS son las siglas en inglés de Restricción de Sustancias Peligrosas. Se trata de una directiva europea: Directiva 2002/95/CE. Restringe el uso de algunas sustancias que se consideran Sustancias Extremadamente Preocupantes (SHVC) en aparatos eléctricos y electrónicos para el territorio de la Unión Europea. A continuación encontrará un listado de estas sustancias: Tenga en cuenta que esta información está sujeta a cambios. Consulte siempre la página web de la Unión Europea para obtener la información más reciente: https://ec.europa.eu/environment/topics/waste-and-recycling/rohs-directive_nl https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011L0065 1. Cadmio y compuestos de cadmio 2. Plomo y compuestos de plomo 3. Mercurio y compuestos de mercurio(Hg) 4. Compuestos de cromo hexavalente(Cr) 5. Bifenilos policlorados (PCB) 6. Naftalenos policlorados (PCN) 7. Parafinas cloradas (PC) 8. Otros compuestos orgánicos clorados 9. Bifenilos polibromados (PBB) 10. Difeniléteres polibromados (PBDE) 11. Otros compuestos orgánicos bromados 12. Compuestos orgánicos de estaño (compuestos de tributilestaño, compuestos de trifenilestaño) 13. Amianto 14. Compuestos azoicos 15. Formaldehído 16. Cloruro de polivinilo (PVC) y mezclas de PVC 17. Éster difenílico decabromado (a partir del 1/7/08) 18. PFOS : Directiva 76/769/CEE de la UE (no se permite en una concentración igual o superior al 0,0005% en masa) 19. Bis(2-etilhexil) ftalato (DEHP) 20. Butilbencilftalato (BBP) 21. Dibutilftalato (DBP) 22. Diisobutilftalato 23. Deca éster difenílico bromado (en equipos eléctricos y electrónicos) Otros países fuera de la Unión Europea han introducido su propia legislación RoHS, que en gran medida es muy similar a la europea.

Propiedades físicas y químicas

Conformidad
RO L0 según las normas EN e IPC
Contenido de haluros
0,00%
Principal campo de uso
soldadura manual
Otros campos de uso
soldadura automatizada, soldadura por estampación, retrabajo de BGA, bumping de obleas, etc...

Documentos