IF 8300

Flux gel de bajo residuo

Interflux® IF 8300 es un flux en gel adhesivo sin haluros y sin limpieza adecuado para el reballing y el retrabajo de BGA.

IF 8300 11

Adecuado para

  • La impresión por estencil es el método más utilizado para aplicar pasta de soldadura en las almohadillas de una placa de circuito impreso (PCB) en la línea de montaje SMT (tecnología de montaje superficial) en la fabricación de productos electrónicos. Tras la impresión por esténcil, los componentes SMD (Dispositivo de Montaje Superficial) se colocan con sus contactos soldables sobre la pasta de soldadura y la placa de circuito impreso se transporta a través de un horno de reflujo donde los componentes se soldan a la placa de circuito impreso. La impresión por estencil también se puede utilizar para aplicar pasta de soldadura en orificios pasantes (THT) para la tecnología Pin in Paste (PiP, reflujo intrusivo) que está pensada para soldar componentes a través de orificios en el proceso de soldadura por reflujo . La impresión por esténcil también puede utilizarse para aplicar adhesivo SMT (pegamento) a la placa de circuito impreso. Los componentes SMD se colocan con su cuerpo sobre el pegamento que se curará en un horno de reflujo. Después, los componentes SMD pegados a la placa de circuito impreso se soldarán en un proceso de soldadura por ola. La placa de circuito impreso se presiona sobre una plantilla que tiene aberturas en las que debe depositarse la pasta de soldadura. En el esténcil hay un volumen de pasta de soldadura. Se baja una rasqueta sobre el esténcil con una presión determinada. La rasqueta se desplaza sobre el esténcil con una determinada velocidad de impresión. Esto hará que la pasta de soldadura ruede dentro de las aberturas. La velocidad de impresión puede estar determinada por el rendimiento deseado, típico de las producciones de gran volumen, pero puede estar limitada por la pasta de soldadura utilizada. Esta velocidad puede variar entre 20-150 mm/s. Una vez establecida la velocidad deseada, habrá que determinar una presión de impresión para esa velocidad de impresión. Velocidades más altas requieren presiones más altas. La presión de impresión correcta es la presión mínima necesaria para obtener una pantalla limpia después de la impresión, lo que significa que toda la pasta de soldadura excesiva ha sido eliminada por la rasqueta. La placa se aleja verticalmente del esténcil, la pasta de soldadura se desprende del esténcil y las almohadillas de la placa de circuito impreso tienen depósitos de pasta de soldadura. El objetivo es obtener un resultado de impresión bien definido en el que toda la pasta de soldadura se haya desprendido del esténcil y no haya quedado pasta de soldadura entre el esténcil y la placa de circuito impreso. Evidentemente, la liberación de la pasta de soldadura es más difícil en el caso de aberturas más pequeñas y esténciles más gruesos. Algunas normas de diseño dicen que la relación entre la superficie de la apertura y la superficie de los lados ("paredes") de la apertura no es preferiblemente inferior a 0,6. La calidad del esténcil es un parámetro importante para un buen desprendimiento de la pasta. Los lados rugosos tienen más probabilidades de adherir la pasta de soldadura. Existen diferentes tipos de esténciles. El más popular es el esténcil de acero inoxidable con aberturas cortadas con láser que se alisan después mediante un proceso químico. A veces se tratan con un revestimiento para una mejor liberación de la pasta. Las principales razones por las que la pasta de soldadura queda prensada entre el esténcil y la placa de circuito impreso son un mal sellado entre la placa y el esténcil o una presión de impresión demasiado alta para la velocidad de impresión utilizada. Esto puede provocar la formación de bolas o puentes de soldadura tras el reflujo. Algunas máquinas de impresión tienen una unidad automatizada de limpieza bajo el esténcil que puede programarse para limpiar el esténcil después de tantas impresiones. Esto facilitará un resultado de impresión estable. Es aconsejable no utilizar líquidos de limpieza a base de IPA o de agua en estas unidades, ya que pueden afectar a la estabilidad de la pasta de soldadura. Es aconsejable utilizar productos específicamente diseñados para este fin. La estabilidad de la pasta de soldadura en el esténcil, es decir, lo bien que la pasta de soldadura mantiene sus propiedades de impresión a lo largo del tiempo, también es un parámetro para un proceso de impresión estable. Algunas máquinas de impresión tienen integrada una AOI (Inspección Óptica Automatizada) que comprobará el resultado de la impresión y emitirá una alarma si se desvía de los valores deseados programados. Esto ayudará a evitar que se fabriquen unidades electrónicas con juntas de soldadura que no se ajusten a un buen estándar.

  • La dispensación es una tecnología utilizada en la fabricación de productos electrónicos para aplicar pasta de soldadura (o un adhesivo) desde una jeringa a una placa de circuito impreso (PCB). La dispensación es una forma más flexible de aplicar pasta de soldadura que la impresión por estarcido estándar, ya que permite aplicar pasta de soldadura de forma selectiva con la presencia de componentes premontados en la superficie. Sin embargo, la dispensación es un proceso mucho más lento que la impresión por estarcido y no es adecuado para producciones de gran volumen. Por eso se utiliza sobre todo para añadir pasta de soldadura adicional en una línea de montaje SMT (tecnología de montaje superficial), pero también para retrabajos y reparaciones y en la creación de prototipos. La dosificación puede realizarse de forma manual o automática. En retrabajo y reparación suele hacerse manualmente con un sistema que aplica aire a presión al émbolo de la jeringa y la pasta de soldadura se empuja hacia fuera a través de una aguja. Pero también puede hacerse a mano con un émbolo manual. En los procesos automatizados, como en un dispensador independiente en una línea de montaje SMT o en un dispensador incorporado en una impresora de esténciles, existen dos sistemas principales para empujar la pasta de soldadura fuera de la jeringa: La presión de aire y el tornillo Archimes. Los sistemas de aire a presión suelen ser más baratos pero la estabilidad volumétrica de los depósitos de pasta de soldadura es un poco más difícil de controlar, especialmente cuando la jeringa está casi vacía y hay un mayor volumen de aire comprimido en combinación con menos material en la jeringa que necesita ser movido por esta presión de aire. Los sistemas con el tornillo de Arquímedes suelen ser más estables y rápidos. Sin embargo, dependiendo de la calidad de la pasta de soldadura, pueden ser sensibles a algunas partículas muy finas de la pasta de soldadura que se aplastan entre el tornillo de Arquímedes y las paredes laterales y que pueden bloquear la aguja por donde sale la pasta de soldadura. Cuanto más pequeña y larga sea la aguja, mayor será el riesgo de bloqueo de la aguja. El tamaño de la aguja se elige en función del tamaño del depósito de soldadura deseado. El tamaño del grano de la pasta de soldadura se elige en función de este tamaño de aguja. En general, se puede utilizar una pasta de soldadura de tipo 3 para agujas con un diámetro interior superior a 0,5 mm, una de tipo 4 para agujas con un diámetro interior de hasta 0,25 mm y una de tipo 5 para agujas con un diámetro interior de hasta 0,15 mm. El rendimiento de dosificación de una pasta de soldadura puede variar de un tipo a otro en términos de estabilidad volumétrica y sensibilidad al bloqueo de la aguja. Si una jeringa de pasta de soldadura se ha almacenado demasiado tiempo, demasiado caliente o demasiado fría, esto también puede afectar al rendimiento de dispensación. La medida en que el tiempo y la temperatura afectan al rendimiento de la dosificación también puede variar de una pasta de soldadura a otra. La pasta de soldadura para dispensar puede estar disponible en diferentes tipos de jeringas requeridas por la máquina a la que va destinada. También pueden estar disponibles con diferentes tipos de émbolos requeridos por la viscosidad de la pasta de soldadura a dispensar. Los tamaños estándar de las jeringas son 5CC, 10CC y 30CC.

  • La soldadura por reflujo es el proceso de soldadura más utilizado en el montaje de componentes electrónicos. Principalmente los componentes SMD (dispositivos de montaje superficial), pero también algunos componentes through hole, se sueldan en un horno de reflujo a una PCB (placa de circuito impreso) mediante una pasta de soldadura. El horno de reflujo suele ser un horno de convección forzada, pero también son posibles los hornos de fase de vapor e IR. El primer paso del proceso consiste en aplicar pasta de soldadura a las almohadillas de la placa de circuito impreso o, en caso de componentes con orificio pasante, en el orificio pasante. Esto último se denomina Pin in Paste (PiP) o tecnología de reflujo intrusivo. El principal método de aplicación es la impresión por esténcil, pero también son posibles la dispensación y el chorro de pasta de soldadura. Dependiendo del método de aplicación, la pasta de soldadura tendrá una consistencia diferente y se presenta en un envase distinto. La pasta de soldadura es una mezcla de polvo de soldadura y flux en gel. El tipo de flux en gel y el tipo de polvo, y en qué proporciones se mezclan, determinarán la consistencia de la pasta. El polvo de soldadura está hecho de una determinada aleación de soldadura y tiene un determinado tamaño de grano (distribución). Los tamaños de grano más finos se utilizan para componentes de paso más pequeño y aberturas de esténcil más pequeñas. La dosificación y aún más el chorreado también requieren tamaños de grano más finos. El gel flux contiene sustancias para desoxidar las superficies a soldar. También contiene sustancias que determinarán en gran medida la consistencia y el comportamiento de la pasta de soldadura en el proceso. Cuando se imprime pasta de soldadura por estarcido, un parámetro importante es que la pasta de soldadura mantenga sus propiedades de impresión durante el tiempo que vaya a estar sobre el estarcido. Esto suele denominarse la estabilidad de la pasta de soldadura. La estabilidad de la pasta de soldadura es difícil de cuantificar, pero puede estimarse a partir de la indicación de la vida útil del esténcil en la ficha técnica. Tras la aplicación de la pasta de soldadura, los componentes SMD se colocan sobre la pasta de soldadura con sus conexiones soldables. En la mayoría de los casos, esto se hace con una máquina Pick and Place. La pasta de soldadura debe tener suficiente fuerza de adherencia para mantener los componentes en su sitio hasta la soldadura. Una cinta transportadora llevará la placa de circuito impreso a través de un horno de reflujo en el que la placa de circuito impreso se somete a un perfil de soldadura por reflujo. Este perfil se crea mediante los ajustes de temperatura de las distintas zonas de convección. Suelen estar situadas tanto en la parte superior como en la inferior. Además de los ajustes de temperatura, en algunos casos también se puede programar la velocidad de convección de las zonas para conseguir una mejor o menor transferencia de calor, o cuando algunos componentes altos experimentan demasiada fuerza de la convección. El objetivo es conseguir que todos los componentes alcancen la temperatura de soldadura, que viene determinada por la aleación de soldadura utilizada, sin dañar o sobrecalentar los componentes sensibles a la temperatura. Esto puede suponer un reto en unidades con una gran diversidad de componentes grandes y pequeños o una distribución desigual del Cu en la placa de circuito impreso. Desde este punto de vista, una aleación de soldadura de bajo punto de fusión limita sustancialmente el riesgo de dañar o predañar los componentes y las placas de circuito impreso. La velocidad del transportador determinará el tiempo del perfil y el rendimiento del horno. En la mayoría de los casos, sin embargo, el proceso Pick and Place limita el rendimiento. No todos los componentes electrónicos son adecuados para la soldadura por reflujo. Algunos debido a su masa térmica como por ejemplo los grandes transformadores u otros debido a su sensibilidad térmica como por ejemplo algunos displays, conectores, relés, fusibles,... Estos componentes suelen estar disponibles como componentes pasantes y se sueldan en otros procesos como la soldadura selectiva, la soldadura por ola, la soldadura manual, la soldadura robotizada, la soldadura láser, ...

  • La soldadura por inmersión es una tecnología utilizada para soldar superficies sumergiéndolas en soldadura líquida. Se utiliza principalmente para alambres y cables y también para los cables de algunos componentes electrónicos y mecánicos. La soldadura por inmersión aplica una capa de soldadura sobre la superficie que proporcionará una buena soldabilidad para los siguientes procesos de soldadura. La soldabilidad de esta capa se mantiene muy bien durante el almacenamiento. La soldadura por inmersión también puede utilizarse en la reelaboración y reparación de una placa de circuito impreso (PCB) para, por ejemplo, eliminar o volver a soldar un conector con orificio pasante. El proceso de inmersión puede realizarse manualmente o mediante un proceso automatizado. Antes de soldar, el conductor o cable se sumerge en un flux de soldadura. Para evitar residuos de flux tras la soldadura, la profundidad de inmersión en el flux suele ser inferior o igual a la profundidad de inmersión en la soldadura. Dependiendo de la soldabilidad de las superficies a pre-estañar, pueden utilizarse distintos flux. Para superficies difíciles de soldar, como Ni, Zn, latón, Cu muy oxidado, ... suelen utilizarse flux solubles en agua. Proporcionan una excelente soldabilidad, pero pueden y deben limpiarse posteriormente con un proceso de lavado con agua, ya que los residuos de estos flux podrían crear problemas (como por ejemplo la corrosión). Para superficies con soldabilidad normal IF 2005C o PacIFic 2009M pueden utilizarse. La aleación de soldadura en la mayoría de los casos es a base de Sn(Ag)Cu. La temperatura de la aleación de soldadura suele ser superior a la de la soldadura por ola y selectiva, ya que así se acelera el proceso y el riesgo de dañar los componentes es muy limitado. También es posible que el proceso de inmersión necesite eliminar/quemar el revestimiento del hilo de Cu a estañar, lo que también requiere temperaturas más altas. En general, las temperaturas de soldadura oscilan entre 300 y 450°C. Estas temperaturas oxidarán bastante la superficie del baño de soldadura. El uso de gránulos antioxidantes puede compensar esta oxidación. Algunos baños de soldadura eliminan mecánicamente la capa superior del baño de soldadura con un rascador justo antes de sumergir el componente en la soldadura. Los tiempos de inmersión dependen mucho de la masa térmica del componente a soldar y suelen ser de 0,5s a 3s.

  • El retrabajo y la reparación en una unidad electrónica pueden realizarse en unidades electrónicas defectuosas que vuelven del campo, pero también pueden ser necesarios en un entorno de producción electrónica para corregir defectos en los procesos de montaje y soldadura. Las acciones típicas de retrabajo y reparación implican la eliminación de puentes de soldadura, la adición de soldadura a componentes mal rellenos de agujeros pasantes o la adición de la soldadura que falta, la sustitución de componentes erróneos, la sustitución de componentes colocados en la dirección equivocada, la sustitución de componentes que presentan defectos relacionados con las altas temperaturas de soldadura en los procesos, la adición de componentes que se dejaron fuera del proceso debido, por ejemplo, a su disponibilidad o a su sensibilidad a la temperatura. La identificación de estos defectos puede realizarse mediante inspección visual, mediante AOI (inspección óptica automatizada), mediante ICT (pruebas en circuito, pruebas eléctricas) o mediante CAT (pruebas asistidas por ordenador, pruebas funcionales). Muchas operaciones de reparación pueden realizarse con una estación de soldadura manual que dispone de un (des)soldador con ajuste de temperatura. La soldadura se añade mediante un hilo de soldadura que está disponible en varias aleaciones y diámetros y que contiene un flux en su interior. En algunos casos se utiliza un flux líquido de reparación y/o un flux en gel para facilitar el proceso de soldadura manual. Para componentes de mayor tamaño, como BGA (Ball Grid Array), LGA (Land Grid Array) QFN (Quad Flat No Leads), QFP (Quad Flat Package), PLCC (Plastic Leaded Chip Carrier),... puede utilizarse una unidad de reparación que simula un perfil de reflujo. Estas unidades de reparación están disponibles en diferentes tamaños y con distintas opciones. En la mayoría de los casos contienen un precalentamiento por la parte inferior que suele ser IR (Infrarrojos). Este precalentamiento puede controlarse mediante un termopar que se coloca en la placa de circuito impreso. Algunas unidades disponen de una unidad pick and place que facilita la correcta colocación del componente en la placa de circuito impreso. La unidad de calentamiento suele ser de aire caliente o de infrarrojos, o una combinación de ambos. Con la ayuda de termopares en la PCB, el calentador se controla para crear el perfil de soldadura deseado. En algunos casos, el reto consiste en llevar el componente a las temperaturas de soldadura sin refundir los componentes adyacentes. Esto puede resultar difícil cuando el componente a reparar es grande y tiene componentes pequeños cerca. Para los BGA con bolas de una aleación de soldadura, se puede utilizar un flux en gel o un flux líquido con mayor contenido en sólidos. En este caso, la soldadura para la unión soldada la proporcionan las bolas. Pero también es posible el uso de una pasta de soldadura. La pasta de soldadura puede imprimirse en los conductores del componente o en la placa de circuito impreso. Esto requiere una plantilla diferente para cada componente. Los BGA también pueden sumergirse en una pasta de soldadura de inmersión especial que primero se imprime en una capa con una plantilla con una gran apertura y un grosor determinado. Para los QFN, LGA QFN, QFP, PLCC,... es necesario añadir soldadura para hacer una unión soldada. En algunos casos, los QFP pueden soldarse a mano, pero la técnica requiere experiencia, por lo que es preferible utilizar una unidad de retrabajo. Los QFP y PLCC tienen cables y pueden utilizarse con una pasta de soldadura por inmersión. Los QFN, LGA's QFN que no tienen cables sino contactos planos no pueden utilizarse con una pasta de soldar por inmersión porque sus cuerpos entrarían en contacto con la pasta de soldar. En este caso, la pasta de soldadura debe imprimirse en los contactos o en la placa de circuito impreso. En general, es más fácil imprimir la pasta de soldadura en el componente que en la placa de circuito impreso, sobre todo cuando se utiliza una plantilla denominada 3D que tiene una cavidad donde se fija la posición del componente. La sustitución de componentes con orificios pasantes puede realizarse con una estación de (des)soldadura manual. Suele hacerse colocando una punta desoldadora hueca sobre la parte inferior del cable del componente que puede succionar la soldadura del orificio. La punta desoldadora tendrá que calentar toda la soldadura del orificio pasante hasta que esté totalmente líquida. En el caso de placas térmicamente pesadas, esto puede resultar muy difícil. En este caso, también se puede calentar la parte superior de la junta de soldadura con un soldador. Otra posibilidad es precalentar la placa antes de la operación de desoldadura. La soldadura del componente con orificio pasante suele realizarse con un hilo de soldadura que contiene más flux o, alternativamente, se añade flux de repaso adicional en el orificio pasante y/o en el cable del componente. En el caso de conectores de orificio pasante más grandes, puede utilizarse un baño de soldadura por inmersión para extraer el conector. Si la accesibilidad en la placa de circuito impreso es limitada, puede utilizarse una boquilla de tamaño adaptado al conector. Se recomienda el uso de flux en esta operación.

Principales ventajas

  • Cuando se sueldan componentes y placas de circuito impreso (PCB) con una gran masa térmica, suele necesitarse una gran ventana de proceso en tiempo y temperatura. Estas placas y componentes necesitan mucho calor para alcanzar las temperaturas de soldadura. Esto lleva tiempo y en algunos procesos de soldadura también requiere temperaturas elevadas. La química de soldadura tendrá que soportar/sobrevivir a estos tiempos mayores y temperaturas elevadas. El mayor reto es soldar componentes de masa térmica pesada con orificio pasante en una placa de circuito impreso de masa térmica pesada. En un agujero pasante, el calor necesario para la soldadura se necesita en ambos lados de la placa. Este calor suele aplicarse sólo desde un lado y tendrá que atravesar la placa hasta el otro lado. Si la placa de circuito impreso tiene muchas capas de Cu, capas gruesas de Cu y capas que están totalmente conectadas al barril del agujero pasante, se desviará mucho calor hacia un lado y habrá que aplicar más calor a la placa para obtener suficiente calor en el otro lado. En algunos procesos el calor se aplica desde ambos lados de la placa en un precalentamiento. Esto facilitará la soldadura a través de orificios en estas unidades electrónicas térmicamente pesadas. Sin embargo, si hay componentes sensibles a la temperatura en el lado en el que se aplica el precalentamiento, hay que tener cuidado de no sobrecalentar y (pre)dañar dichos componentes.

  • Bajo residuo transparente

  • Apto para reballing y retrabajo de BGA

  • Los circuitos integrados de rejilla (BGA), J-lead y los Gull Wing son componentes que, debido a su disposición física) resultan difíciles de retrabajar con una estación de (des)soldadura normal. En la mayoría de los casos, el retrabajo y la reparación se realizan con una estación de retrabajo que puede simular un perfil de reflujo. El uso de productos químicos de soldadura específicamente diseñados para este proceso es obligatorio para obtener un buen resultado final. Dependiendo del componente que se esté retrabajando y del paso del proceso, se puede dar preferencia a diferentes tipos de química de soldadura. A menudo se utiliza un gel flux debido a su gran ventana de proceso. Las diferentes viscosidades del gel flux admitirán diferentes métodos de aplicación, como la dosificación, la aplicación con brocha, la impresión de plantillas, la transferencia con agujas, la inmersión, ... Por otro lado, los flux líquidos de reparación permiten una aplicación muy precisa con un bolígrafo flux con punta de fibra de vidrio y darán una menor formación de residuos que los flux en gel. A veces se requiere un residuo bajo por razones estéticas, pero también cuando hay que aplicar un revestimiento conformado o para aplicaciones que pueden ser sensibles a los residuos como, por ejemplo, la electrónica de alta frecuencia. Un residuo bajo también facilitará el uso de un ERSA Scope que se utiliza para mirar debajo de un BGA después de la soldadura. Sin embargo, la ventana de proceso de los flux líquidos es menor que la de los flux en gel. Las pastas de soldadura también pueden utilizarse para el retrabajo y la reparación de BGAs, pero sin duda para los circuitos integrados J-lead y Gull Wing que necesitan la soldadura adicional para la unión soldada. Para la impresión por esténcil se puede utilizar la misma pasta de soldadura que para el proceso SMT. Para la inmersión, que puede utilizarse para componentes que tienen una separación entre el cuerpo del componente y los conductores soldables, se utiliza una pasta de soldadura de inmersión especial que proporcionará una cantidad repetible de soldadura en los conductores que se sumergen en la pasta de inmersión.

  • La estación ERSA Dip&Print forma parte de una estación de retrabajo para componentes electrónicos que son difíciles de reparar con una estación de (des)soldadura estándar. Por ejemplo, los componentes con terminación inferior (BTC), como los Ball Grid Arrays (BGA), QFN, DFN, LGA, ...pero también algunos circuitos integrados J-lead y de ala de gaviota como los QFP y PLCC son componentes que necesitan una estación de retrabajo especial. La estación ERSA Dip&Print está diseñada para aplicar pasta de soldadura o gel flux a esos componentes mediante impresión por esténcil o inmersión. El uso de productos químicos de soldadura específicamente diseñados para este proceso es obligatorio para obtener un buen resultado final. Para la inmersión, que puede utilizarse para componentes que tienen una separación entre el cuerpo del componente y los conductores soldables, se utiliza una pasta de soldadura de inmersión especial que proporcionará una cantidad repetible de soldadura en los conductores que se sumerjan en la pasta de inmersión. Para la impresión por esténcil se puede utilizar la misma pasta de soldadura que para el proceso SMT. Se puede utilizar un gel flux tanto para la impresión de esténciles como para la inmersión. Un gel flux sólo puede utilizarse cuando hay suficiente soldadura para hacer una unión soldada, como es el caso, por ejemplo, de los BGA.

  • La colofonia, también llamada colofonia, es una sustancia derivada de los árboles que suele utilizarse en los flux para soldadura. Puede utilizarse tanto en flux líquidos como en flux en gel. Los flux que contienen colofonia pueden identificarse por la denominación "RO" en la clasificación IPC. En general, la colofonia proporciona una buena ventana de proceso en tiempo y temperatura, pero tiene una serie de desventajas dependiendo de la aplicación en la que se utilice el flux que contiene colofonia. En los flux líquidos para soldadura por ola y selectiva, la colofonia supondrá un mayor riesgo de bloqueo de la boquilla de los sistemas de aplicación de flux por pulverización y micro chorro, lo que se traducirá en un mayor mantenimiento y riesgo de malos resultados de soldadura. Los residuos de un flux con base de colofonia (=colofonia) en la máquina de soldar y en las herramientas y soportes son bastante difíciles de eliminar y normalmente se necesita un limpiador con base de disolvente. Cuando el flux con colofonia acaba accidentalmente en los contactos de un conector o en estructuras de peine de contacto como las de un mando a distancia o en contactores / relés / interruptores electromecánicos, se sabe que da problemas de contacto y mal funcionamiento de la unidad electrónica sobre el terreno. Además los residuos del flux que quedan en la placa pueden dar problemas de contacto con las pruebas eléctricas de pines ( ICT= In Circuit Testing) lo que puede dar lugar a retrasos en la producción por falsos errores. Esto suele requerir la limpieza de la placa de circuito impreso y/o de las clavijas de prueba. Estas caras clavijas de prueba son bastante frágiles y sensibles a ser dañadas por la limpieza. Además, se sabe que los residuos de un flux de colofonia no son compatibles con los revestimientos conformados en el tiempo. El residuo de colofonia forma una capa de separación entre la placa de circuito impreso y el revestimiento de conformación que con el tiempo puede provocar el desprendimiento del revestimiento de conformación y también grietas, especialmente cuando la unidad electrónica experimenta muchos ciclos de temperatura (calentamiento y enfriamiento). Por estas razones, los flux sin colofonia y, más concretamente, los flux de la clasificación "OR" se utilizan generalmente para la soldadura por ola y selectiva. La colofonia también puede utilizarse en los hilos de soldadura. Aunque la colofonia proporciona una buena ventana de proceso en tiempo y temperatura, es muy sensible a la decoloración cuando se calienta. La decoloración dependerá del tipo de colofonia y de la temperatura que haya visto. Como las temperaturas de las puntas de soldadura suelen ser bastante elevadas, la colofonia en el hilo de soldadura dará lugar a la formación de residuos visuales bastante pesados alrededor de las juntas de soldadura. Esto las distinguirá de las demás juntas de soldadura realizadas en reflujo, ola y soldadura selectiva. Cuando esto no es deseable, es necesario realizar una operación de limpieza. Además, los humos de una colofonia que contiene hilo de soldadura se consideran peligrosos. Una extracción de humos es obligatoria, pero, en cualquier caso, aconsejable para cualquier operación de soldadura manual. Los alambres que contienen colofonia se siguen utilizando bastante, pero los alambres de soldadura sin colofonia y, más concretamente, los alambres de soldadura de la clasificación "RE" están ganando importancia. La colofonia también se utiliza en las pastas de soldadura. Además de proporcionar una buena ventana de proceso en tiempo y temperatura, también proporciona una buena estabilidad de la pasta de soldadura sobre el esténcil. Esto facilitará un proceso de impresión estable y, por tanto, unos resultados de soldadura y unos índices de defectos estables. La decoloración de la colofonia en la soldadura por reflujo no es tan prominente como en el caso del hilo de soldadura porque las temperaturas en la soldadura por reflujo son más bajas que en la soldadura manual. Aun así, el residuo de colofonia tiene poca compatibilidad con el revestimiento de conformación y con el tiempo, tras los ciclos térmicos, podría mostrar grietas o desprendimiento del revestimiento de conformación. Aunque la mayoría de los fabricantes aplican el revestimiento de conformación sobre los restos de pasta de soldadura, para obtener resultados óptimos es aconsejable limpiar los restos de pasta de soldadura. Dadas las ventajas de la colofonia descritas anteriormente, la mayoría de las pastas de soldadura contienen colofonia.

  • La química de soldadura absolutamente libre de halógenos no contiene halógenos ni haluros añadidos intencionadamente. La clasificación IPC permite hasta 500ppm de halógenos para la clasificación más baja 'L0'. Los flux para soldadura, las pastas de soldadura y los alambres de soldadura de esta clase suelen denominarse 'libres de halógenos'. La química de soldadura absolutamente libre de halógenos va un paso más allá y no contiene este nivel 'permitido' de halógenos. Específicamente en combinación con aleaciones de soldadura sin plomo y en aplicaciones electrónicas sensibles, se ha informado de que estos bajos niveles de halógenos causan problemas de fiabilidad como, por ejemplo, corrientes de fuga demasiado altas. Los halógenos son elementos de la tabla periódica como el Cl, el Br, el F y el I. Tienen la propiedad física de que les gusta reaccionar. Esto es muy interesante desde el punto de vista de la química de la soldadura porque su función es limpiar los óxidos de las superficies a soldar. Y efectivamente los halógenos realizan muy bien ese trabajo, incluso superficies difíciles de limpiar como el latón, Zn, Ni,...o superficies muy oxidadas o degradadas de I-Sn y OSP (Protección Orgánica de Superficies) pueden soldarse con la ayuda de flux halogenados. Los halógenos proporcionan una gran ventana de proceso en la soldabilidad. Sin embargo, el problema es que los residuos y productos de reacción de los flux halogenados pueden ser problemáticos para los circuitos electrónicos. Suelen tener una alta higroscopicidad y una elevada solubilidad en agua y suponen un mayor riesgo de electromigración y de altas corrientes de fuga. Esto supone un alto riesgo de mal funcionamiento del circuito electrónico. Específicamente con las aleaciones de soldadura sin plomo hay más informes de que incluso los niveles más pequeños de halógenos pueden ser problemáticos para las aplicaciones electrónicas sensibles. Las aplicaciones electrónicas sensibles suelen ser circuitos de alta resistencia, circuitos de medición, circuitos de alta frecuencia, sensores,... Por eso la tendencia es alejarse de los halógenos en la química de la soldadura en la fabricación de productos electrónicos. En general, cuando la soldabilidad de las superficies a soldar del componente y de la placa de circuito impreso (PCB) son normales, no hay necesidad de estos halógenos. Los productos de soldadura absolutamente libres de halógenos diseñados de forma inteligente proporcionarán una ventana de proceso lo suficientemente amplia como para limpiar las superficies y obtener un buen resultado de soldadura y esto en combinación con residuos de alta fiabilidad.

  • Cuando un producto de soldadura lleva la etiqueta No-Clean, significa que ha superado pruebas de fiabilidad como una prueba de resistencia al aislamiento superficial (SIR) o una prueba de migración electro(química). Estas pruebas están diseñadas para comprobar las propiedades higroscópicas de los residuos del producto de soldadura en condiciones de temperatura elevada y humedad relativa alta. No-Clean indica que los residuos pueden permanecer en la unidad electrónica tras el proceso de soldadura sin ser limpiados. Esto se aplicará con diferencia a la mayoría de las aplicaciones electrónicas. Para aplicaciones electrónicas muy sensibles, que suelen ser circuitos electrónicos de alta resistencia, circuitos electrónicos de alta frecuencia, etc... es posible que sea necesaria la limpieza de la unidad electrónica. Siempre es responsabilidad del fabricante electrónico juzgar si la limpieza es necesaria o no.

  • RoHS son las siglas en inglés de Restricción de Sustancias Peligrosas. Se trata de una directiva europea: Directiva 2002/95/CE. Restringe el uso de algunas sustancias que se consideran Sustancias Extremadamente Preocupantes (SHVC) en aparatos eléctricos y electrónicos para el territorio de la Unión Europea. A continuación encontrará un listado de estas sustancias: Tenga en cuenta que esta información está sujeta a cambios. Consulte siempre la página web de la Unión Europea para obtener la información más reciente: https://ec.europa.eu/environment/topics/waste-and-recycling/rohs-directive_nl https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011L0065 1. Cadmio y compuestos de cadmio 2. Plomo y compuestos de plomo 3. Mercurio y compuestos de mercurio(Hg) 4. Compuestos de cromo hexavalente(Cr) 5. Bifenilos policlorados (PCB) 6. Naftalenos policlorados (PCN) 7. Parafinas cloradas (PC) 8. Otros compuestos orgánicos clorados 9. Bifenilos polibromados (PBB) 10. Difeniléteres polibromados (PBDE) 11. Otros compuestos orgánicos bromados 12. Compuestos orgánicos de estaño (compuestos de tributilestaño, compuestos de trifenilestaño) 13. Amianto 14. Compuestos azoicos 15. Formaldehído 16. Cloruro de polivinilo (PVC) y mezclas de PVC 17. Éster difenílico decabromado (a partir del 1/7/08) 18. PFOS : Directiva 76/769/CEE de la UE (no se permite en una concentración igual o superior al 0,0005% en masa) 19. Bis(2-etilhexil) ftalato (DEHP) 20. Butilbencilftalato (BBP) 21. Dibutilftalato (DBP) 22. Diisobutilftalato 23. Deca éster difenílico bromado (en equipos eléctricos y electrónicos) Otros países fuera de la Unión Europea han introducido su propia legislación RoHS, que en gran medida es muy similar a la europea.

Propiedades físicas y químicas

Conformidad
RE L0 según las normas EN e IPC
Contenido de halogenuros
0,00%
Viscosidades disponibles
210 kcps, 70 kcps, 25 kcps

Documentos