RA 25015

Flux de soldadura activado

outdated

Interflux® RA25015 es un flux para soldadura sin limpieza a base de colofonia activada. El RA25015 puede utilizarse en superficies poco soldables. RA25010 es menos activado y RA25050 es más activado que RA25015.

RA 25015 1L

Adecuado para

  • La soldadura manual es una tecnología de fabricación electrónica que utiliza un (des)soldador manual para realizar una unión soldada o desoldar un componente de una placa de circuito impreso. El proceso se utiliza sobre todo en retrabajos y reparaciones, pero también para soldar componentes individuales que han quedado fuera del proceso de soldadura en masa (soldadura por reflujo o por ola). Esto puede deberse a la disponibilidad o a la sensibilidad a la temperatura de estos componentes. El soldador suele formar parte de una estación de soldadura que dispone de una fuente de alimentación que controla la temperatura del soldador. Esta temperatura puede ajustarse en función de la aleación de soldadura utilizada y suele situarse entre 320°C-390°C. El soldador dispone de una punta de soldar intercambiable que puede elegirse en función del componente que se vaya a soldar. Para una transferencia de calor óptima es recomendable utilizar la punta de soldar más grande posible, sobre todo cuando se sueldan componentes con orificios pasantes (de gran masa térmica). Para soldar componentes y placas térmicamente pesados, la potencia de la estación de soldadura también es importante para mantener la temperatura ajustada de la punta de soldar. En el retrabajo y la reparación, cambiar la punta de soldar para cada componente diferente no es realista y sólo se utilizan unas pocas puntas de soldar. Existen puntas de soldar para soldar varias juntas de soldadura de montaje superficial seguidas como, por ejemplo, para los SOIC (Small Outline Integrated Circuit) y los QFP (Quad Flat Package). Para favorecer la transferencia de calor y el flujo de la soldadura, las puntas de soldar son humectables, lo que significa que interactúan con la aleación de soldadura. Durante la soldadura, estas puntas se oxidan y pueden perder su humectabilidad, lo que obstruirá la transferencia de calor. Esto puede evitarse limpiando la punta de soldadura. Al cabo de un tiempo, las puntas de soldadura también se desgastarán y será necesario sustituirlas. La vida útil de la punta de soldar puede optimizarse evitando el uso de limpiadores de puntas de soldar abrasivos o agresivos o evitando limpiar mecánicamente la punta de soldar con, por ejemplo, lana de acero o papel de lija. Es aconsejable utilizar un limpiador de puntas absolutamente libre de halógenos. En la soldadura manual, la soldadura para la unión soldada suele suministrarse mediante un alambre de soldadura. Un alambre de soldadura está disponible en varios diámetros y varias aleaciones, y lleva en su interior una cantidad determinada de un cierto tipo de flux. La aleación suele ser la misma o una aleación similar a la del proceso de soldadura a granel (reflujo, ola o soldadura selectiva). El diámetro se elige en función del tamaño de la unión soldada. El contenido de flux en el hilo de soldadura suele venir determinado por la masa térmica del componente y la placa que se va a soldar. Las juntas de soldadura con orificios pasantes (de gran masa térmica) necesitan más flux. Un mayor contenido de flux también dará más residuos visuales de flux tras la soldadura. A veces se necesita más flux, que en la mayoría de los casos es un flux líquido de retrabajo y reparación, pero también puede ser un flux en gel. El tipo de flux/alambre de soldadura viene determinado por la soldabilidad de las superficies a soldar. Con la soldabilidad normal de los componentes electrónicos y las placas de circuito impreso es aconsejable un tipo de flux/alambre de soldadura 'L0' absolutamente libre de halógenos. En general, una operación de soldadura manual se realiza así: Ajuste la temperatura de la punta de soldar en función de la aleación de soldadura utilizada. Para las aleaciones sin plomo, la temperatura de trabajo aconsejada se sitúa entre 320°C y 390°C. Para metales más densos como el níquel, la temperatura puede elevarse a 420°C. Es importante utilizar una buena estación de soldadura. Utilice una estación de soldadura con un tiempo de respuesta corto y con potencia suficiente para su aplicación. Elija la punta de soldar correcta: para reducir la resistencia térmica, es importante crear una zona de contacto lo más amplia posible con las superficies a soldar. Caliente ambas superficies simultáneamente. Toque ligeramente con el hilo de soldadura, el punto donde se encuentran la punta de soldar y las superficies a soldar (la pequeña cantidad de soldadura asegura una disminución drástica de la resistencia térmica). Añada posteriormente sin interrupción, la cantidad correcta de soldadura cerca de la punta de soldar sin tocar la punta. Esto reducirá el riesgo de salpicaduras de flux y el consumo prematuro del mismo.

Principales ventajas

  • RoHS son las siglas en inglés de Restricción de Sustancias Peligrosas. Se trata de una directiva europea: Directiva 2002/95/CE. Restringe el uso de algunas sustancias que se consideran Sustancias Extremadamente Preocupantes (SHVC) en aparatos eléctricos y electrónicos para el territorio de la Unión Europea. A continuación encontrará un listado de estas sustancias: Tenga en cuenta que esta información está sujeta a cambios. Consulte siempre la página web de la Unión Europea para obtener la información más reciente: https://ec.europa.eu/environment/topics/waste-and-recycling/rohs-directive_nl https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011L0065 1. Cadmio y compuestos de cadmio 2. Plomo y compuestos de plomo 3. Mercurio y compuestos de mercurio(Hg) 4. Compuestos de cromo hexavalente(Cr) 5. Bifenilos policlorados (PCB) 6. Naftalenos policlorados (PCN) 7. Parafinas cloradas (PC) 8. Otros compuestos orgánicos clorados 9. Bifenilos polibromados (PBB) 10. Difeniléteres polibromados (PBDE) 11. Otros compuestos orgánicos bromados 12. Compuestos orgánicos de estaño (compuestos de tributilestaño, compuestos de trifenilestaño) 13. Amianto 14. Compuestos azoicos 15. Formaldehído 16. Cloruro de polivinilo (PVC) y mezclas de PVC 17. Éster difenílico decabromado (a partir del 1/7/08) 18. PFOS : Directiva 76/769/CEE de la UE (no se permite en una concentración igual o superior al 0,0005% en masa) 19. Bis(2-etilhexil) ftalato (DEHP) 20. Butilbencilftalato (BBP) 21. Dibutilftalato (DBP) 22. Diisobutilftalato 23. Deca éster difenílico bromado (en equipos eléctricos y electrónicos) Otros países fuera de la Unión Europea han introducido su propia legislación RoHS, que en gran medida es muy similar a la europea.

  • El aumento de la actividad de un producto de soldadura puede ser necesario para superficies con mala soldabilidad como, por ejemplo, latón, Ni desprotegido, Ag oxidado, Cu que no fue micrograbado,...o superficies con soldabilidad degradada como, por ejemplo, I-Sn que se almacenó demasiado tiempo o vio demasiado calor, Cu-OSP que pasó un perfil de reflujo sin plomo hace demasiado tiempo,...Una indicación de la actividad de un producto de soldadura es su clasificación. La clasificación más popular y aceptada para los productos de soldadura es la IPC. L0 es la clase de activación más baja y la estándar, debería ser adecuada para todas las superficies convencionales de calidad normal utilizadas en el montaje de componentes electrónicos. L1 es la clase de activación más baja pero con un contenido de halógenos de hasta el 0,5%. En la mayoría de los casos, estos halógenos ya darán un mejor resultado en muchas de las superficies anteriormente mencionadas con una soldabilidad deficiente o degradada. Las otras clases de activación son M0 y M1 y H0 y H1. M significa Media y H Alta. 0 significa hasta 500 ppm de halógenos tanto para M0 como para H0. 1 significa hasta un 2% de halógenos para la clase M1 y para H1 se permite más de un 2% de halógenos. Los productos de soldadura de la clase H deben tratarse con cuidado, ya que pueden ser corrosivos y deben limpiarse, preferiblemente en un proceso de limpieza automatizado.

  • La capacidad de humectación de un producto de soldadura se refiere a lo bien que la activación del producto de soldadura es capaz de limpiar los óxidos de las superficies a soldar. Es necesario eliminar estos óxidos para permitir que la aleación de soldadura líquida penetre en las superficies a soldar. Cuando la calidad de las superficies a soldar en la fabricación de productos electrónicos es normal, es posible utilizar un producto de soldadura de la clase de activación más baja, L0. En general, sólo cuando las superficies están degradadas o cuando el metal base es difícil de soldar, se utiliza un producto con una mayor actividad o una mayor capacidad de humectación. Tales superficies pueden ser, por ejemplo químico Sn que se aplicó demasiado fino o se almacenó demasiado tiempo antes de soldar, componentes, o placas de circuito impreso que se almacenaron demasiado tiempo en condiciones de calor y humedad y están muy oxidados, Ni no protegido, latón,... Otra posible razón para utilizar un producto con mayor capacidad de humectación es la facilidad de uso. Por ejemplo, soldadura de hilo con mayor capacidad de humectación en general proporcionará una soldadura más rápida y no es tan sensible a la manipulación correcta necesaria para producir una buena unión soldada a mano. En operaciones de soldadura manual de gran volumen para unidades electrónicas que no tienen unos requisitos tan elevados en cuanto a los residuos tras la soldadura, se suelen utilizar soldadura de hilo con mayor capacidad de humectación. También para la soldadura robotizada y la soldadura láser se suelen utilizar soldadura de hilo con mayor capacidad de humectación porque, en general, tienen mejores propiedades para estos procesos.

  • La colofonia es un producto natural procedente de los árboles. Hay muchos tipos de colofonias con propiedades muy diferentes, pero se aplican algunas propiedades generales. Como parte de la química de la soldadura, al igual que los flux de soldadura, las pastas de soldadura y los alambres de soldadura, en general, la colofonia proporciona una gran ventana de proceso en el proceso de soldadura. Esto significa que, en general, es capaz de soportar tiempos más largos y temperaturas más altas que, por ejemplo, una resina. Una ventaja de la colofonia en un flux líquido es que, en general, tiende a dejar menos bolas de soldadura en la máscara de soldadura tras la soldadura por ola o selectiva. Además, el residuo de colofonia proporcionará una cierta protección contra la humedad atmosférica. Esto puede proporcionar una posibilidad extra de superar las pruebas de fiabilidad climática. Sin embargo, esta capacidad de protección se degrada con el tiempo. Por otro lado, la colofonia contenida en un flux para soldadura líquida también puede tener algunas desventajas. Aumenta el riesgo de que se obstruya la boquilla de pulverización o la boquilla de chorro de las máquinas de soldadura por ola y selectiva. Los residuos que quedan en la máquina y en los soportes son bastante difíciles de limpiar. Los residuos que quedan en la placa de circuito impreso pueden interferir en la prueba de pines eléctricos (ICT, In Circuit Testing) y crear un problema de contacto causando una lectura falsa/error falso. En algunos casos esto puede llevar a la obstrucción del flujo de producción. Cuando parte de la colofonia que contiene el flux pulverizado acaba accidentalmente en los contactos de, por ejemplo, un conector, un interruptor/relé/contactor con una carcasa parcialmente abierta o en los contactos de carbono o en el patrón de contactos de la placa de circuito impreso, esto también puede provocar problemas de contacto. En general, los residuos de colofonia son poco compatibles con los revestimientos conformados. Tras un ciclo térmico, el revestimiento conforme puede empezar a mostrar grietas por las que puede penetrar la humedad atmosférica y condensarse. Teniendo en cuenta todo lo anterior, sopesando las ventajas de la colofonia en los flux líquidos para soldadura frente a los inconvenientes, existe una tendencia actual a optar por flux líquidos sin colofonia. Los flux clasificados 'OR' no contienen colofonia. La colofonia se utiliza muy a menudo en los hilos de soldadura debido a su amplia ventana de proceso en tiempo y temperatura. La desventaja es que la colofonia tiende a decolorarse con la temperatura y deja residuos visualmente pesados. Cuando el alambre de soldadura se utiliza para repasar placas de circuito impreso electrónicas, este residuo es para algunos fabricantes electrónicos no deseable, ya que no les gusta que sus clientes vean que se ha realizado un repaso en una placa de circuito impreso. La limpieza de estos residuos de colofonia requiere agentes de limpieza especiales y es un proceso que lleva mucho tiempo. En este caso, los fabricantes pueden optar por un hilo de soldadura clasificado RE como el IF 14. Los residuos son mínimos y pueden eliminarse con un cepillo seco. La colofonia también se utiliza en pastas de soldadura. Además de proporcionar una buena ventana de proceso en tiempo y temperatura, también proporciona una buena estabilidad de la pasta de soldadura sobre el esténcil. Esto facilitará un proceso de impresión estable y, por tanto, unos resultados de soldadura y unos índices de defectos estables. La decoloración de la colofonia en la soldadura por reflujo no es tan prominente como en el caso del hilo de soldadura porque las temperaturas en la soldadura por reflujo son más bajas que en la soldadura manual. Aún así, el residuo de colofonia tiene poca compatibilidad con el revestimiento de conformación y con el tiempo, tras los ciclos térmicos, podría mostrar grietas o desprendimiento del revestimiento de conformación. Aunque la mayoría de los fabricantes aplican el revestimiento de conformación sobre los restos de pasta de soldadura, para obtener resultados óptimos es aconsejable limpiar los restos de pasta de soldadura. Dadas las ventajas de la colofonia descritas anteriormente, la mayoría de las pastas de soldadura contienen colofonia.

  • Los flux para soldadura a base de alcohol son flux líquidos que tienen alcohol(es) como disolvente(s) principal(es). La mayoría de los flux líquidos utilizados en la fabricación de productos electrónicos siguen siendo de base alcohólica. Las razones principales son su uso histórico y, por tanto, su cuota de mercado y su ventana de proceso, en general, mayor en comparación con los flux de base acuosa. Los flux de base acuosa tienen numerosas ventajas frente a los de base alcohólica, como un menor consumo, la ausencia de emisiones de COV (compuestos orgánicos volátiles, VOC en sus siglas en inglés), la ausencia de riesgo de incendio, la no necesidad de transporte y almacenamiento especiales, un menor olor en la zona de producción, ... Sin embargo, muchos fabricantes de electrónica parecen preferir la mayor ventana de proceso de los flux de base alcohólica a las ventajas de los flux de base acuosa. En general, los flux con base de alcohol son menos sensibles a los ajustes correctos del pulverizador flux para conseguir una buena aplicación del flux en la superficie y en los orificios pasantes. Además, se evaporan más fácilmente en el precalentamiento y ofrecen menos riesgo de que las gotas de disolvente restantes creen bolas de soldadura, salpicaduras de soldadura o puentes al entrar en contacto con la ola. Otro parámetro que complica la implantación de los flux al agua es que cambiar un flux en algunos casos puede ser un proceso largo y costoso. Suele implicar pruebas de homologación y la aprobación de los clientes finales. Específicamente para los EMS (Electronic Manufacturing Services = subcontratistas) esto puede suponer un reto. Algunos países ya han aplicado una legislación que limita las emisiones de COV de las chimeneas de las fábricas o que impone impuestos a las emisiones de COV. Esto parece ser un incentivo adicional para cambiar a los flux de base acuosa. Un acontecimiento reciente ha obligado a muchos fabricantes a interesarse por los flux de base acuosa. La pandemia de COVID, a principios de 2020, aumentó repentinamente la demanda de desinfectantes a base de alcohol hasta el punto de que en un momento dado la disponibilidad de alcoholes en el mercado era prácticamente inexistente. Por suerte, la industria que produce alcoholes pudo aumentar sus volúmenes justo a tiempo para evitar que los fabricantes de electrónica se quedaran sin flux para hacer funcionar sus máquinas de soldar.